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Superhydrophobicity and Slip




Topography & Wetting
Droplets that Skate

What contact angle does a droplet adopt on a “rough” surface?

Young's Law Wenzel Eq. Cassie-Baxter Eqg
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Roughness Young's Law &, Topography

I' = true area/planar projection 1:S = solid surface fraction



Topographic Enhancement of Water Repellence

Polymer Microposts

Etched Metal
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hydrophobic hydrophobic
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References Shirtcliffe,et al., Langmuir 21, 2005, 937; Adv. Maters. 16, 2004, 1929; J. Micromech. Microeng. 14, 2004, 1384.



Slip by Simple Newtonian Liquids

No Slip Mixed

a) zt—

Experimental Evidence — Steady Flow

1. Theory'? supported by simulations suggests b=L f(¢,)/2m

2. Micro-PIV experiments detailing flow profiles3 (h=1-7 um = b=0.28.)
3. Cone-and-plate rheometer experiments* — drag reduction > 10%

4. Hydrofoil in a water tunnel experiments® — drag reduction of 10%

References *Philip, Z. Angew. Math. Phys. 23, 1972; Lauga & Stone, J. Fluid Mech. 489, 2004; 3Joseph et al., Phys. Rev.
Lett. 97, 2006;*Choi & Kim, Phys. Rev. Lett. 96, 2006; >Gogte, et al. Phys. Fluids 17, 2005.



QCM Surfaces




OCM with Micro-Post Textures

Previous Data on QCMSs

1. Polyethylene glycol-water on a hydrophobic
micro-post QCM!1

2. Polystyrene with embedded PTFE based
superhydrophobic surface?

3. 0.6 um silica nanoparticle layer
superhydrophobic multirersonance device?
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New Experiments in this Talk

1. SU-8 micro-posts 5, 10, 15, 18 um tall
Water-glycerol mixtures (0-100%)

Bare (non-hydrophobised) & hydrophobised
Contact angles

Impedance spectra fitted to BVD model
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References 'Evans et al.,. Sens. Act. A 2005, 123-24, 73; 2Fujita, et al., Jap. J. Appl. Phys. 2005, 44, 6726;
3Kwoun, et al., IEEE Trans. Ultrason. Ferroel. Freg. Control. 2006, 53, 1400.



Contact Angle Data

Concentrations: 0%
Bare flat SU-8, 6, 75°
Hydrophobic flat, 8 1150
Bare 5 um post, & 106°

Hydrophobic 5 pum post, &1 155°
Bare 10 um post, & 118°
Hydrophobic 10 um post, &1151°
Bare 15 um post, & 1190
Hydrophobic 15 um post, 7143°

Bare 18 um post, & 1230
Hydrophobic 18 um post, 7138°

Cassie-Baxter Theory
Bare posts should give (138x2)°

Hydrophobic posts should be (150+3)° 2. "Skating” on hydrophobised posts

40% 51.3% 58.2% 69.2% 78.2%

127° 117/° 950 115° 118°
1490 143° 1470 1440 148°

117° 113° 120° 106° 116°
1490 138° 148° 137° 150°

1. Partial penetration of bare posts




QCM Confirmation of "Skating”
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Hydrophobised 18 um micro-posts
Solid-line is before pressure applied
Dotted curves is after pressure is applied

Visually confirmed water ingress
after pressure applied



Data for Superhydrophobic OCM'’s




—Af (kH2)

Flat Surfaces — Newtonian Liquid

Polished Crystal

Spin Coated SU-8
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Micro-Post Surfaces — Newtonian or Not?

Bare (non-hydrophobised) Hydrophobised

Sum =010 10um = OO0

15um = AAA 18um = OO0

Filled symbols = hydrophobised Hydrophobisation of taller postgy
Data<80% glycerol = dotted rectangles Changes type of response
Kanazawa & Gordon Theory = - - - -

Solid lines = Guide to eye for 0.5 slope
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Micro-Post Surfaces: Hydrophobised v Bare
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Taller hydrophobic posts decouple
response from liquid
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Micro-Post Surfaces: Viscosity-Density

Tallest (184m) hydrophobic posts have reduced coupling to ldjui
10 ¢m and 15 pm tall posts have unusual response
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Insertion Loss/ dB

QCM Spectra

Hydrophobised 15 um
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Hydrophobised 18 um
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Frequency and bandwidth shifts are

far less than K&G prediction




Discussion Points?

0
o
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1. Resonances
Length scales of features?

Compressional waves?

Penetration Depth & (um)

Penetration depth issues?

0 ZIO AlfO l60 I80 l100
2. Types Of Response Glycerol Concentration%

Viscoelasticity in air and/or in liquid? Water

Trapped “mass”, decoupling and slip?
Sharpening resonances? Crystal
Positive frequency shifts?

3. Sensor Problems and Potential

Real surfaces are not polished crystals with fixed hydrophobicity

Design recognition layer that switches to hydrophilic on binding?



Conclusions

1. Water/Glycerol on Micro-Posts

Bare/non-hydrophobised = Partial penetration of liquids

Hydrophobised = Superhydrophobic surfaces
2. Water/Glycerol Response of Micro-Post QCM’s

Bare/non-hydrophobised = Newtonian-like response (conc<80%)

Hydrophobised = Change of type of response for height>5 pm

3. Unusual Responses for Hydrophobised Micro-Posts
All curves shower a lower magnitude of response (decoupling)
Resonances can sharpen with increasing viscosity-density product

Tallest case (18 pum) shows most decoupling
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QCM: Slip Boundary Condition v Trapped Mass

e Acoustic Impedance!

_ Znoslip
: slip _ L
— Use slip length, b, and look TR I
at first order calculation 1+,7fZL
. . o
* Newtonian Liquid ZMosiP < fiap

— Kanazawa result for no-slip

— Small “slip” correction uses b/d [A—wj =[A—wj [1"2_bj
W Jslin @ Jnoslip o

* Negative b and Trapped Mass??

— Define a mass as Am=bp, “slip” correction
(A_a)j ~(_ 2bj(ij _ «Amy Sauerbrey result for
@ Jadditional  \ 9 N @ Jnosiip T HsPs “rigid” liquid mass

References *McHale et al., J. Appl. Phys., 88, 2000, 7304-7312; “McHale & Newton, J. Appl. Phys. 95, 2004, 373-380;
3S. J. Martin, et al., Anal. Chem., 65, 1993, 2910-2922; see also Ellis et al., J. Appl. Phys. 94, 2003, 6201-6207.



Penetration Depth & (uM)

Resonances with Penetration Depth
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“Slip” Boundary Condition v Trapped Mass

Average Position of Solid-Liquid Interface b
Slip length, b, to model average position of an interface — i
— liqui
Negative b= Effective interface moves {0 ,-o—f{—+<—— v,
liquid side of boundary b <olid

Newtonian Liquid

Kanazawa & Gordon result for no-slip (A_a)) ~ (A_wj (1_2_b)
modified by “slip” correction using b/o W Jslip noslip

_ _ Slip length to penetration depth
Negative Slip Length

it (20, A2,
Define a mass as Am=Dbpo O ) additional o N w noslip 7Ty HsPs

Sauerbrey result for trapped “rigid” liquid mass

References *McHale & Newton, J. Appl. Phys. 2004, 95, 373..



Acoustic Reflection View

Substrate Supports Standing Waves

A. .. ..
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Cavity length increases> additional frequency decreasle

Limitations on “Slip” B.C./Trapped Mass View

Effectively assuming equal reflectivity at peaks and troughs of topography

Cannot necessarily use additivity of liquid entragmh+ trapped
mass when incomplete liquid penetration occurs




A Mechanism for Positive Frequency Shifts?

« Effective Acoustic Cavity Length
' top surface of crystal has uniform reflectivity
If air “trapping” occurs, reflectivity of peaks

and troughs differs
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Topographic Enhancement of Water Repellence
.thed Metal

Deposited Metal Polymer Microposts
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Flat & Paftérnéa & Patterned & Flat & Patterned &
hydrophobic hydrophobic hydrophobic hydrophobic hydrophobic

References Shirtcliffe,et al., Langmuir 21, 2005, 937; Adv. Maters. 16, 2004, 1929; J. Micromech. Microeng. 14, 2004, 1384.



